Displacement data assimilation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Assimilation

Data assimilation refers to the statistical techniques used to combine numerical and statistical models with observations to give an improved estimate of the state of a system or process. Typically a data assimilation problem has a sequential aspect where data as it becomes available over time is used to update the state or parameters of a dynamical system. Data assimilation is usually distingu...

متن کامل

Evaluating Data Assimilation Algorithms

3 Data assimilation leads naturally to a Bayesian formulation in which the posterior probability 4 distribution of the system state, given all the observations on a time window of interest, 5 plays a central conceptual role. The aim of this paper is to use this Bayesian posterior 6 probability distribution as a gold standard against which to evaluate various commonly used 7 data assimilation al...

متن کامل

14: Multiscale Data Assimilation

This research is concerned with next-generation multiscale data assimilation, with a focus on shelfbreak regions, including non-hydrostatic effects. Our long-term goals are to: Develop and utilize GMM-DO data assimilation schemes for rigorous multiscale inferences, where observations provide information on varied spatial and temporal scales Develop and utilize test cases and simulation experime...

متن کامل

Multiscale Data Assimilation

This research is concerned with next-generation multiscale data assimilation, with a focus on shelfbreak regions, including non-hydrostatic effects. Our long-term goals are to: Develop and utilize GMM-DO data assimilation schemes for rigorous multiscale inferences, where observations provide information on varied spatial and temporal scales Develop and utilize test cases and simulation experime...

متن کامل

Advanced Interdisciplinary Data Assimilation:

The efficient interdisciplinary 4D data assimilation with nonlinear models via Error Subspace Statistical Estimation (ESSE) is reviewed and exemplified. ESSE is based on evolving an error subspace, of variable size, that spans and tracks the scales and processes where the dominant errors occur. A specific focus here is the use of ESSE in interdisciplinary smoothing which allows the correction o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2017

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2016.10.025